九州工業大学大学院情報工学府 先端情報工学専攻 電子情報工学専門分野 (小田部研究室)

学生番号	19676111	氏名	木下 雄士
論文題目	縦磁界効果を用いた 10	kA 級超伝導面	恒流電力ケーブルの
	設計製作およ	び検証に関す	する研究

1. 背景及び研究目的

超伝導体は直流電気抵抗が無く、大容量の電流を流せ ることから直流電力ケーブルへの応用が期待される。一 般に超伝導体に電流を流すと、自身の電流により磁界が 生じ、臨界電流密度が減少する。そこで現在の超伝導ケー ブルの多くが磁界の影響を抑えるような構造となってい る。一方で我々は縦磁界効果を利用した超伝導ケーブル を提唱している。Fig.1のように内側の層と外側の層で構 成し、ケーブルの巻き線角度を数度ずつ変えることで、全 体で考えたときに電流と平行に磁界が生じるように設計 する。これにより磁界が発生した際に臨界電流密度の減 少を抑えられると期待できる。

本研究では 10 kA 級の超伝導ケーブルを想定し、従 来の磁界の影響を抑える巻き方と、縦磁界を発生させ る巻き方とでケーブルを設計した際の電流値を比較し た。また計算の結果に基づき、縦磁界を利用したケー ブルと従来のケーブルの両方について 2 m の 10 kA 級 ケーブルを実際に作製し、測定した臨界電流特性から 縦磁界ケーブルの優位性を調査した。

<u>2. 実験方法</u>

REBa₂Cu₃O₃(REBCO; RE=Rare Earth)系コート線材 のJ_c-B特性をもとにケーブルを設計し、全体に流せる電 流値を計算した。内側からi番目の超伝導層の中心から の距離をa_i、巻き角度を θ_i 、臨界電流密度をJ_{Ci}として臨 界電流はI_i = $2\pi a_i J_{Ci} t$ で与えられる。このとき、それぞ れの層での縦磁界はB_{ill} = $\sum_{k=i+1}^{n} \frac{\mu_0 I_k \sin^2 \theta_k}{2\pi a_k \cos \theta_k}$ 、横磁界は B_i = $\sum_{k=1}^{i-i} \frac{\mu_0 I_k \cos \theta_k}{2\pi a_i}$ となり、磁界の強さはB_i = $(B_{ill}^2 + B_{i\perp}^2)^{1/2}$ 、線材方向からの角度は $\varphi_i = \theta_i - \tan^{-1}(B_{i\perp}/B_{ill})$ で与えられる。これらの式を用いてケーブル全体の電 流値I_cを繰り返し近似で数値的に求めた。

ケーブルの作製に関して、通電層とシールド層の両 方についてYBa₂Cu₃O₇₋₈の線材を用い、最外層の傾きが 30°となるように段階的に角度をつけて線材を巻き付け た。四端子法を用いて、通電層のみに流した場合と通電層 とシールド層を直列接続した場合について測定を行った。 3.実験結果及び考察

内径 30 mm、往復各 3 層のときのケーブルに流せる全 電流の巻き角度依存性を Fig. 2(a)に示す。前提として角度

が増加すると線材の本数が減少するため電流値は減少す る。巻き角度30°での使用を想定すると従来の構造に比べ て縦磁界ケーブルの電流値は 18%程度高くなっており、 優位であることが分かる。しかしながら30°では10kAに 満たなかったため、電流容量を増加するために往復各 4 層で計算した結果を Fig. 2(b)に示す。こちらは縦磁界ケー ブルが 19%程度高くなった。シールド層に流れる電流値 が増えたことで縦磁界が強くなり、臨界電流密度が増加 したと考えられる。

Fig. 2 θ_{max} dependence of total current for (a) 3 layers in inner and shield layers, and (b) 4 layers in inner and shield layers.

実験結果と計算結果における*I*cの比較を Table 1 に示す。 結果が概ね一致していることから、実験とケーブルの設 計における妥当性を表している。縦磁界効果により、通電 層のみ・通電層とシールド層の直列接続の両方に関して 電流が増加している。従来型と比べて、線材 1 本あたり では 8.8%、ケーブル全体としては 18%の電流の増加が見 られ、縦磁界効果を用いたケーブルの優位性を示すこと ができた。

Table 1 Comparison of experimental and theoretical results of *I*_c of inner layer

theoretical results of T _c of hiller layer								
	Measurement	Experiment		Theoretical calculation				
Cable type		<i>I</i> _c [A]	I _c per tape [A]	<i>I</i> _c [A]	I _c per tape [A]			
	Only inner layer	12799	143.8	13057	146.7			
Longitudinal power cable	Inner-shield layer in series connection	13150	147.7	13222	148.6			
0	Only inner layer	11251	137.2	11110	135.5			
power cable	Inner-shield layer in series connection	11139	135.8	11110	135.5			

4. 研究業績

 木下雄士,米中友浩,一木悠人,他:第66回応用物 理学会春季学術講演会,8a-Z27-1他国内学会3件
Y. Kinoshita, T. Yonenaka, *et al*.: The 33nd International Symposium on Superconductivity (2020), AP8-4
Y. Kinoshita, *et al*.: 10th ACASC/2nd Asian-ICMC/CSSJ Joint Conference, Okinawa Convention Center (2020), 8P-26
Y Kinoshita *et al*.: Journal of Physics: Conference Series 1590 (2020) 012023